Ipac_logo

Euclid

ESA
Mission
with
Participation
from
NASA

 

Euclid
NASA
Science
Center
at
IPAC

Recent Euclid-Relevant Publications by US-Euclid Science Teams

Galaxy Clustering:

1. Cosmological Leverage from the Matter Power Spectrum in the Presence of Baryon and Nonlinear Effects, by Jannis Bielefeld, Dragan Huterer, Eric V. Linder, JCAP05(2015)023

2. Predicting the Redshift 2 Hα Luminosity Function Using [OIII] Emission Line Galaxies,; by Mehta, Vihang; Scarlata, Claudia; Colbert, James W.; Dai, Y. S.; Dressler, Alan; Henry, Alaina; Malkan, Matt; Rafelski, Marc; Siana, Brian; Teplitz, Harry I.; Bagley, Micaela; Beck, Melanie; Ross, Nathaniel R.; Rutkowski, Michael; Wang, Yun, ApJ, 811, 141 (2015)

3. Geometric biases in power-spectrum measurements, by Samushia, L.; Branchini, E.; Percival, W. J., Monthly Notices of the Royal Astronomical Society, Volume 452, Issue 4, p.3704-3709 (2015)

4. Robust New Statistic for fitting the Baryon Acoustic Feature, by Keisuke Osumi, Shirley Ho, Daniel J. Eisenstein, Mariana Vargas-Magaña, arXiv:1505.00782

5. Testing General Relativity with Growth rate measurement from Sloan Digital Sky Survey III Baryon Oscillations Spectroscopic Survey galaxies, by Shadab Alam, Shirley Ho, Mariana Vargas-Magaña, Donald P. Schneider, 2015, MNRAS, 453, 1754

6. Probing gravity at large scales through CMB lensing, by Anthony R. Pullen, Shadab Alam, Shirley Ho, 2015, MNRAS, 449, 4326

7. Lyman-tomography of Cosmic Infrared Background Fluctuations with Euclid: Probing Emissions and Baryonic Acoustic Oscillations at z ≳ 10, by Kashlinsky, A.; Arendt, R. G.; Atrio-Barandela, F.; Helgason, K., 2015, ApJ(Letters), 813, L12

8.  Evidence for the kinematic Sunyaev-Zeldovich effect with ACTPol and velocity reconstruction from BOSS, by Schaan, Emmanuel, et al., Phys. Rev. D 93, 082002 (2016)

9. Understanding redshift space distortions in density-weighted peculiar velocity, by Sugiyama, Naonori S.; Okumura, Teppei; Spergel, David N., JCAP, 07, 001 (2016)

10. Estimating the power spectrum covariance matrix with fewer mock samples, by Pearson, David W.; Samushia, Lado, MNRAS, 457, 993 (2016) 

11. Cosmological parameter inference from galaxy clustering: the effect of the posterior distribution of the power spectrum, by Kalus, B.; Percival, W. J.; Samushia, L., Monthly Notices of the Royal Astronomical Society, Volume 455, Issue 3, p.2573-2581 (2016)

12. Estimating sparse precision matrices, by Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross, MNRAS, 460, 1567 (2016) 

13. Large Covariance Matrices: Smooth Models from the 2-Point Correlation Function, O'Connell, Ross; Eisenstein, Daniel; Vargas, Mariana; Ho, Shirley; Padmanabhan, Nikhil, MNRAS, 462, 2681 (2016)

14. Constraining Gravity at the Largest Scales through CMB Lensing and Galaxy Velocities, by Anthony R. Pullen, Shadab Alam, Siyu He, Shirley Ho, MNRAS, 460, 4098 (2016)

15. Testing deviations from ΛCDM with growth rate measurements from 6 Large Scale Structure Surveys at z=0.06 to 1, by Shadab Alam, Shirley Ho, Alessandra Silvestri, MNRAS, 456, 3743 (2016)

16. Modeling galaxy clustering on small scales to tighten constraints on dark energy and modified gravity, by Yun Wang, arXiv:1606.08054, MNRAS, in press



Weak Lensing:

1. Galaxy Alignments: Observations and Impact on Cosmology, by Kirk, Donnacha; Brown, Michael L.; Hoekstra, Henk; Joachimi, Benjamin; Kitching, Thomas D.; Mandelbaum, Rachel; Sifón, Cristóbal; Cacciato, Marcello; Choi, Ami; Kiessling, Alina; Leonard, Adrienne; Rassat, Anais; Schäfer, Björn Malte, Space Science Reviews, Volume 193, Issue 1-4, pp. 139-211 (2015)

2. Galaxy Alignments: Theory, Modelling & Simulations, by Kiessling, Alina; Cacciato, Marcello; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L.; Rassat, Anais, Space Science Reviews, Volume 193, Issue 1-4, pp. 67-136 (2015)

3. The impact of cosmic variance on simulating weak lensing surveys, by Kannawadi, Arun; Mandelbaum, Rachel; Lackner, Claire, MNRAS, 449, 3597 (2015)

4. Galaxy Alignments: An Overview, by Joachimi, Benjamin; Cacciato, Marcello; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Hoekstra, Henk; Kiessling, Alina; Kirk, Donnacha; Rassat, Anais, Space Science Reviews, Volume 193, Issue 1-4, pp. 1-65 (2015)

5. The Whole is Greater than the Sum of the Parts: Optimizing the Joint Science Return from LSST, Euclid and WFIRST, by Jain, B.; Spergel, D.; Bean, R.; Connolly, A.; Dell'antonio, I.; Frieman, J.; Gawiser, E.; Gehrels, N.; Gladney, L.; Heitmann, K.; Helou, G.; Hirata, C.; Ho, S.; Ivezić, Ž.; Jarvis, M.; Kahn, S.; Kalirai, J.; Kim, A.; Lupton, R.; Mandelbaum, R.; Marshall, P.; Newman, J. A.; Perlmutter, S.; Postman, M.; Rhodes, J.; Strauss, M. A.; Tyson, J. A.; Walkowicz, L.; Wood-Vasey, W. M., arXiv:1501.07897, Whitepaper developed at June 2014 U. Penn Workshop

6. Mapping the Galaxy Color–Redshift Relation: Optimal Photometric Redshift Calibration Strategies for Cosmology Surveys, by Masters, Daniel; Capak, Peter; Stern, Daniel; Ilbert, Olivier; Salvato, Mara; Schmidt, Samuel; Longo, Giuseppe; Rhodes, Jason; Paltani, Stephane; Mobasher, Bahram; Hoekstra, Henk; Hildebrandt, Hendrik; Coupon, Jean; Steinhardt, Charles; Speagle, Josh; Faisst, Andreas; Kalinich, Adam; Brodwin, Mark; Brescia, Massimo; Cavuoti, Stefano, Astrophysical Journal, Volume 813, Issue 1, article id. 53, 15 pp. (2015).

7. How well can charge transfer inefficiency be corrected? A parameter sensitivity study for iterative correction, by Israel, Holger; Massey, Richard; Prod'homme, Thibaut; Cropper, Mark; Cordes, Oliver; Gow, Jason; Kohley, Ralf; Marggraf, Ole; Niemi, Sami; Rhodes, Jason; Short, Alex; Verhoeve, Peter, MNRAS, 453, 561 (2015)

8. Exploiting cross correlations and joint analyses, by Rhodes, J.; Allen, S.; Benson, B. A.; Chang, T.; de Putter, R.; Dodelson, S.; Doré, O.; Honscheid, K.; Linder, E.; Ménard, B.; Newman, J.; Nord, B.; Rozo, E.; Rykoff, E.; Vallinotto, A.; Weinberg, D.,  Astroparticle Physics, Volume 63, p. 42-54. (2015)

9. Galaxy shapes and alignments in the MassiveBlack-II hydrodynamic and dark matter-only simulations, Tenneti, Ananth; Mandelbaum, Rachel; Di Matteo, Tiziana; Kiessling, Alina; Khandai, Nishikanta, Monthly Notices of the Royal Astronomical Society, Volume 453, Issue 1, p.469-482 (2015)

10. Constraining Cosmology with Shear Peak Statistics: Tomographic Analysis, by N. Martinet, J. Bartlett, A. Kiessling, B. Sartoris, A&A, 581, 10 (2015)

11. An accurate and practical method for inference of weak gravitational lensing from galaxy images, by Bernstein, Gary M.; Armstrong, Robert; Krawiec, Christina; March, Marisa C., MNRAS, 459, 4467 (2016)

12. Intrinsic alignments of disk and elliptical galaxies in the MassiveBlack-II and Illustris simulations, by Tenneti, Ananth; Mandelbaum, Rachel; Di Matteo, Tiziana, MNRAS, 462, 2668 (2016)

13. Intrinsic alignments of BOSS LOWZ galaxies II: Impact of shape measurement methods, by Singh, Sukhdeep; Mandelbaum, Rachel, MNRAS, 457, 2301 (2016)

14. Hierarchical Cosmic Shear Power Spectrum Inference, by J. Alsing, A. Heavens, A. H. Jaffe, A. Kiessling, B. Wandelt, T. Hoffmann, MNRAS, 455, 4452 (2016)

15. Intrinsic alignments in redMaPPer clusters - I. Central galaxy alignments and angular segregation of satellites, by Huang, Hung-Jin; Mandelbaum, Rachel; Freeman, Peter E.; Chen, Yen-Chi; Rozo, Eduardo; Rykoff, Eli; Baxter, Eric J.,MNRAS, 463, 222 (2016)

16. Exploring photometric redshifts as an optimization problem: an ensemble MCMC and simulated annealing-driven template-fitting approach, Speagle, Joshua S.; Capak, Peter L.; Eisenstein, Daniel J.; Masters, Daniel C.; Steinhardt, Charles L., MNRAS, 461, 3432 (2016)

17. Variations of cosmic large-scale structure covariance matrices across parameter space, by Reischke, Robert; Kiessling, Alina; Schafer, Bjorn Malte, arXiv:1607.03136, MNRAS, in press

18. Bayesian hierarchical modeling of weak lensing – the golden goal, by Heavens, Alan; Alsing, Justin; Jaffe, Andrew; Hoffman, Till; Kiessling, Alina; Wandelt, Benjamin, to appear in the proceedings of the Marcel Grossmann Meeting XIV (2016)

19. Looking through the same lens: shear calibration for LSST, Euclid & WFIRST with stage 4 CMB lensing, by Schaan, Emmanuel; Krause, Elisabeth; Eifler, Tim; Doré, Olivier; Miyatake, Hironao; Rhodes, Jason; Spergel, David N, arXiv:1607.01761



Other:

1. "Estimating Astrophysical Sky Backgrounds for Euclid: Implications for the Sensitivity and Surface Density of Galaxies in the Wide Area Survey", A. Rettura & R. Chary, Euclid internal report v1.0, 31 March 2015

2. "Deep Survey requirements for CIB study", by Kashlinsky, A. & Arendt, R.G., Report for PU-SWG

3. Reconstructing Emission from Pre-reionization Sources with Cosmic Infrared Background Fluctuation Measurements by the JWST by Kashlinsky, A.; Mather, J. C.; Helgason, K.; Arendt, R. G.; Bromm, V.; Moseley, S. H., ApJ, 804, 99 (2015)

4. The VIMOS Ultra-Deep Survey: ~10 000 galaxies with spectroscopic redshifts to study galaxy assembly at early epochs 2 < z ≃ 6, Le Fèvre, O., et al., A&A, 576A, 79 (2015)

5. Quintessence's Last Stand? by Eric Linder, Phys. Rev. D 91, 063006 (2015)

6. Tailoring Strong Lensing Cosmographic Observations, by Eric Linder, Phys. Rev. D 91, 083511 (2015)

7. On the physical requirements for a pre-reionization origin of the unresolved near-infrared background, by Helgason, K.; Ricotti, M.; Kashlinsky, A.; Bromm, V., MNRAS, 455, 282 (2015)

8. "Characterizing the Dust Attenuation in Local Star-forming Galaxies", A. J. Battisti, D. Calzetti, R. Chary, Astrophysical Journal, in press (2016)

9. Cosmic infrared background fluctuations and zodiacal light, by Arendt, R. G., Kashlinsky, A., Moseley, S. H., Mather, J., ApJ, 824, 26 (2016)

10. LIGO gravitational wave detection, primordial black holes and the near-IR cosmic infrared background anisotropies, by A. Kashlinsky, ApJ(Letters), 823, L25 (2016)

11. How Do You Solve a Problem Like Modified Gravity? Challenges in Connecting Theory and Observations, by Eric Linder, arXiv:1607.03113

12. The COSMOS2015 Catalog: Exploring the 1 < z < 6 Universe with Half a Million Galaxies, Laigle, C., et al., ApJS, 224, 24 (2016)

13. An Empirical Approach to Cosmological Galaxy Survey Simulation: Application to SPHEREx Low-Resolution Spectroscopy, Stickley, Nathaniel R.; Capak, Peter; Masters, Daniel; de Putter, Roland; Doré, Olivier; Bock, Jamie, arXiv:1606.06374 (2016)  

14. The VIMOS Ultra Deep Survey First Data Release: spectra and spectroscopic redshifts of 698 objects up to z~6 in CANDELS, Tasca, L. A. M., et al., arXiv:1602.01842

15. Doubling Strong Lensing as a Cosmological Probe, by Eric Linder, Phys. Rev. D 94, 083510 (2016)